Topology and combinatorics of real line arrangements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology and combinatorics of real line arrangements

We prove the existence of complexified real arrangements with the same combinatorics but different embeddings in P. Such pair of arrangements has an additional property: they admit conjugated equations on the ring of polynomials over Q( √ 5).

متن کامل

Combinatorics of Line Arrangements and Characteristic Varieties

The complement M of a complex line arrangementA in C gives rise to combinatorial data, namely, the intersection lattice L(A). We prove that if the arrangement A is the complexification of a real arrangement, the characteristic varieties of complex rank one local systems on M are determined by the combinatorics of the arrangement A.

متن کامل

Topology of Generic Line Arrangements

Our aim is to generalize the result that two generic complex line arrangements are equivalent. In fact for a line arrangement A we associate its defining polynomial f = ∏ i(aix + biy + ci), so that A = (f = 0). We prove that the defining polynomials of two generic line arrangements are, up to a small deformation, topologically equivalent. In higher dimension the related result is that within a ...

متن کامل

Topology of real coordinate arrangements

We prove that if a simplicial complex ∆ is (nonpure) shellable, then the intersection lattice for the corresponding real coordinate subspace arrangement A∆ is homotopy equivalent to the link of the intersection of all facets of ∆. As a consequence, we show that the singularity link of A∆ is homotopy equivalent to a wedge of spheres. We also show that the complement of A∆ is homotopy equivalent ...

متن کامل

Real line arrangements and fundamental groups

Let A be a real line arrangement in P(R), and let AC be its complexification. Let CC be the complement P (C) \ ⋃ AC. Let G be the Galois group of C/R. We construct a G-equivariant 2-dimensional strong deformation retract of CC. As an application, we give an explicit presentation of the orbifold fundamental group π1(CC//G), and deduce from it an explicit presentation of the ordinary fundamental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2005

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x05001405